Fast inversion of Chebyshev { Vandermonde matrices 1

نویسندگان

  • I. Gohberg
  • V. Olshevsky
چکیده

This paper contains two fast algorithms for inversion of ChebyshevvVander-monde matrices of the rst and second kind. They are based on special representations of the Bezoutians of Chebyshev polynomials of both kinds. The paper also contains the results of numerical experiments which show that the algorithms proposed here are not only much faster, but also more stable than other algorithms available. It is also eecient to use the above two algorithms for solving ChebyshevvVandermode systems of equations with preprocessing. 0 Introduction In this paper we consider polynomial Vandermonde matrix of the form V P t = 2 6 6 6 6 4

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Fast Algorithm for the Inversion of Quasiseparable Vandermonde-like Matrices

The results on Vandermonde-like matrices were introduced as a generalization of polynomial Vandermonde matrices, and the displacement structure of these matrices was used to derive an inversion formula. In this paper we first present a fast Gaussian elimination algorithm for the polynomial Vandermonde-like matrices. Later we use the said algorithm to derive fast inversion algorithms for quasise...

متن کامل

A fast Björck-Pereyra-like algorithm for solving quasiseparable- Hessenberg-Vandermonde systems

In this paper we derive a fast O(n) algorithm for solving linear systems where the coefficient matrix is a polynomial-Vandermonde VR(x) = [rj−1(xi)] matrix with polynomials R related to a quasiseparable matrix. The result is a generalization of the well-known Björck-Pereyra algorithm for classical Vandermonde systems. As will be shown, many important systems of polynomials are related to quasis...

متن کامل

Displacement Structure Approach to Polynomial Vandermonde and Related Matrices

In this paper we introduce a new class of what we shall call polynomial Vandermonde-like matrices. This class generalizes the polynomial Vandermonde matrices studied earlier by various authors, who derived explicit inversion formulas and fast algorithms for inversion and for solving the associated linear systems. A displacement structure approach allows us to carry over all these results to the...

متن کامل

Vandermonde Matrices with Chebyshev Nodes

For n × n Vandermonde matrix Vn = (αi−1 j )1≤i j≤n with translated Chebyshev zero nodes, it is discovered that V T n admits an explicit QR decomposition with the R-factor consisting of the coefficients of the translated Chebyshev polynomials of degree less than n. This decomposition then leads to an exact expression for the condition number of its submatrix Vk,n = (αi−1 j )1≤i≤k,1≤j≤n (so-calle...

متن کامل

Displacement Structure Approach to PolynomialVandermonde and Related

||||||||||||||||||||||||||||||||||||||| ABSTRACT In this paper we introduce a new class of what we shall call polynomial Vandermonde-like matrices. This class generalizes the polynomial Vandermonde matrices studied earlier by various authors, who derived explicit inversion formulas and fast algorithms for inversion and for solving the associated linear systems. A displacement structure approach...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1994